skip to main content


Search for: All records

Creators/Authors contains: "Mitchell, C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    Accretion discs properties should deviate from standard theory when magnetic pressure exceeds the thermal pressure. To quantify these deviations, we present a systematic study of the dynamical properties of magnetically arrested discs (MADs), the most magnetized type of accretion disc. Using an artificial cooling function to regulate the gas temperature, we study MADs of three different thermal thicknesses, hth/r = 0.3, 0.1, and 0.03. We find that the radial structure of the disc is never mostly supported by the magnetic field. In fact, thin MADs are very near Keplerian. However, as discs gets colder, they become more magnetized and the largest deviations from standard theory appear in our thinnest disc with hth/r = 0.03. In this case, the disc is much more extended vertically and much less dense than in standard theory because of vertical support from the turbulent magnetic pressure and wind-driven angular momentum transport that enhances the inflow speed. The thin disc also dissipates a lot of thermal energy outside of z/r = ±0.03 and a significant fraction of this dissipation happens in mildly relativistic winds. The enhanced dissipation in low-density regions could possibly feed coronae in X-ray binaries (XRBs) and active galactic nuclei (AGNs). Wind-driven accretion will also impact the dynamical evolution of accretion discs and could provide a mechanism to explain the rapid evolution of changing-look AGN and the secular evolution of XRBs. Finally, our MAD winds have terminal velocities and mass-loss rates in good agreement with the properties of ultrafast outflows observed in AGN.

     
    more » « less
  2. ABSTRACT

    Large-scale magnetic fields in the nuclear regions of protogalaxies can promote the formation and early growth of supermassive black holes (SMBHs) by direct collapse and magnetically boosted accretion. Turbulence associated with gravitational infall and star formation can drive the rms field strength toward equipartition with the mean gas kinetic energy; this field has a generic tendency to self-organize into large coherent structures. If the poloidal component of the field (relative to the rotational axis of a star-forming disc) becomes organized on scales ≲r and attains an energy of order a few per cent of the turbulent energy in the disc, then dynamo effects are expected to generate magnetic torques capable of increasing the inflow speed and thickening the disc. The accretion flow can transport matter towards the centre of mass at a rate adequate to create and grow a massive direct-collapse black hole seed and fuel the subsequent AGN at a high rate, without becoming gravitationally unstable. Fragmentation and star formation are thus suppressed and do not necessarily deplete the mass supply for the accretion flow, in contrast to prevailing models for growing and fuelling SMBHs through disc accretion.

     
    more » « less
  3. Free, publicly-accessible full text available May 1, 2024
  4. The noise performance of a high sensitivity, wide-field astronomical phased array feed receiver can be characterized by measurements using the antenna Y factor method. These measurements are used to determine figures of merit for an active array receiver. Antenna elements for the Advanced L Band Phased Array Camera for Astronomy (ALPACA) were measured using the antenna Y factor method to determine the active array and receiver noise figure, the antenna loss, receiver equivalent noise temperature, and radiation efficiency of the system over its 500[Formula: see text]MHz operating bandwidth. The completed ALPACA instrument will feature a fully cryogenic design with both the low-noise amplifiers and array elements cryogenically cooled. The uncooled performance measurements from the antenna Y factor method are used to extrapolate the elements cryogenic radiation efficiency and antenna loss showing that it is expected that the elements will contribute less than 1 K to the overall system noise temperature. These results validate the antenna Y factor method to measure key antenna parameters such as the antenna radiation efficiency and show that the instruments front-end array and electronics meets expected performance targets. 
    more » « less
  5. Developmental hypoxia has profound and persistent effects on the vertebrate cardiovascular system, but the nature, magnitude, and long-term outcome of the hypoxic consequences are species specific. Here we aim to identify common and novel cardiovascular responses among vertebrates that encounter developmental hypoxia, and we discuss the possible medical and ecological implications. 
    more » « less
  6. Abstract The magnetorotational instability (MRI) is a fundamental mechanism determining the macroscopic dynamics of astrophysical accretion disks. In collisionless accretion flows around supermassive black holes, MRI-driven plasma turbulence cascading to microscopic (i.e., kinetic) scales can result in enhanced angular-momentum transport and redistribution, nonthermal particle acceleration, and a two-temperature state where electrons and ions are heated unequally. However, this microscopic physics cannot be captured with standard magnetohydrodynamic (MHD) approaches typically employed to study the MRI. In this work, we explore the nonlinear development of MRI turbulence in a pair plasma, employing fully kinetic particle-in-cell (PIC) simulations in two and three dimensions. First, we thoroughly study the axisymmetric MRI with 2D simulations, explaining how and why the 2D geometry produces results that differ substantially from 3D MHD expectations. We then perform the largest (to date) 3D simulations, for which we employ a novel shearing-box approach, demonstrating that 3D PIC models can reproduce the mesoscale (i.e., MHD) MRI dynamics in sufficiently large runs. With our fully kinetic simulations, we are able to describe the nonthermal particle acceleration and angular-momentum transport driven by the collisionless MRI. Since these microscopic processes ultimately lead to the emission of potentially measurable radiation in accreting plasmas, our work is of prime importance to understand current and future observations from first principles, beyond the limitations imposed by fluid (MHD) models. While in this first study we focus on pair plasmas for simplicity, our results represent an essential step toward designing more realistic electron–ion simulations, on which we will focus in future work. 
    more » « less
  7. ABSTRACT

    Sgr A* exhibits flares in the near-infrared and X-ray bands, with the luminosity in these bands increasing by factors of 10–100 for ≈60 min. One of the models proposed to explain these flares is synchrotron emission of non-thermal particles accelerated by magnetic reconnection events in the accretion flow. We use the results from particle-in-cell simulations of magnetic reconnection to post-process 3D two-temperature GRMHD simulations of a magnetically arrested disc (MAD). We identify current sheets, retrieve their properties, estimate their potential to accelerate non-thermal particles, and compute the expected non-thermal synchrotron emission. We find that the flux eruptions of MADs can provide suitable conditions for accelerating non-thermal particles to energies γe ≲ 106 and producing simultaneous X-ray and near-infrared flares. For a suitable choice of current-sheet parameters and a simplified synchrotron cooling prescription, the model can simultaneously reproduce the quiescent and flaring X-ray luminosities as well as the X-ray spectral shape. While the near-infrared flares are mainly due to an increase in the temperature near the black hole during the MAD flux eruptions, the X-ray emission comes from narrow current sheets bordering highly magnetized, low-density regions near the black hole, and equatorial current sheets where the flux on the black hole reconnects. As a result, not all infrared flares are accompanied by X-ray ones. The non-thermal flaring emission can extend to very hard (≲ 100 keV) X-ray energies.

     
    more » « less
  8. Abstract Astrophysical jets, launched from the immediate vicinity of accreting black holes, carry away large amounts of power in a form of bulk kinetic energy of jet particles and electromagnetic flux. Here we consider a simple analytical model for relativistic jets at larger distances from their launching sites, assuming a cylindrical axisymmetric geometry with a radial velocity shear, and purely toroidal magnetic field. We argue that as long as the jet plasma is in magnetohydrostatic equilibrium, such outflows tend to be particle dominated, i.e., the ratio of the electromagnetic to particle energy flux, integrated over the jet cross-sectional area, is typically below unity, σ < 1. At the same time, for particular magnetic and radial velocity profiles, magnetic pressure may still dominate over particle pressure for certain ranges of the jet radius, i.e., the local jet plasma parameter β pl < 1, and this may be relevant in the context of particle acceleration and production of high-energy emission in such systems. The jet magnetization parameter can be elevated up to the modest values of σ ≲  ( 10 ) only in the case of extreme gradients or discontinuities in the gaseous pressure, and a significantly suppressed velocity shear. Such configurations, which consist of a narrow, unmagnetized jet spine surrounded by an extended, force-free layer, may require an additional poloidal field component to stabilize them against current-driven oscillations, but even this will not substantially elevate their σ parameter. 
    more » « less
  9. ABSTRACT

    Magnetically arrested accretion discs (MADs) around black holes (BHs) have the potential to stimulate the production of powerful jets and account for recent ultra-high-resolution observations of BH environments. Their main properties are usually attributed to the accumulation of dynamically significant net magnetic (vertical) flux throughout the arrested region, which is then regulated by interchange instabilities. Here, we propose instead that it is mainly a dynamically important toroidal field – the result of dynamo action triggered by the significant but still relatively weak vertical field – that defines and regulates the properties of MADs. We suggest that rapid convection-like instabilities, involving interchange of toroidal flux tubes and operating concurrently with the magnetorotational instability (MRI), can regulate the structure of the disc and the escape of net flux. We generalize the convective stability criteria and disc structure equations to include the effects of a strong toroidal field and show that convective flows could be driven towards two distinct marginally stable states, one of which we associate with MADs. We confirm the plausibility of our theoretical model by comparing its quantitative predictions to simulations of both MAD and SANE (standard and normal evolution; strongly magnetized but not ‘arrested’) discs, and suggest a set of criteria that could help to distinguish MADs from other accretion states. Contrary to previous claims in the literature, we argue that MRI is not suppressed in MADs and is probably responsible for the existence of the strong toroidal field.

     
    more » « less